Olfaction and Odor Discrimination Are Mediated by the C. elegans Guanylyl Cyclase ODR-1

نویسندگان

  • Noelle D. L'Etoile
  • Cornelia I. Bargmann
چکیده

Animals in complex environments must discriminate between salient and uninformative sensory cues. Caenorhabditis elegans uses one pair of olfactory neurons called AWC to sense many different odorants, yet the animal can distinguish each odorant from the others in discrimination assays. We demonstrate that the transmembrane guanylyl cyclase ODR-1 is essential for responses to all AWC-sensed odorants. ODR-1 appears to be a shared signaling component downstream of odorant receptors. Overexpression of ODR-1 protein indicates that ODR-1 can influence odor discrimination and adaptation as well as olfaction. Adaptation to one odorant, butanone, is disrupted by ODR-1 overexpression. Olfactory discrimination is also disrupted by ODR-1 overexpression, probably by overproduction of the shared second messenger cGMP. We propose that AWC odorant signaling pathways are insulated to permit odor discrimination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in cGMP Levels Affect the Localization of EGL-4 in AWC in Caenorhabditis elegans

The Protein Kinase G, EGL-4, is required within the C. elegans AWC sensory neurons to promote olfactory adaptation. After prolonged stimulation of these neurons, EGL-4 translocates from the cytosol to the nuclei of the AWC. This nuclear translocation event is both necessary and sufficient for adaptation of the AWC neuron to odor. A cGMP binding motif within EGL-4 and the Gα protein ODR-3 are bo...

متن کامل

The Caenorhabditis elegans odr-2 gene encodes a novel Ly-6-related protein required for olfaction.

Caenorhabditis elegans odr-2 mutants are defective in the ability to chemotax to odorants that are recognized by the two AWC olfactory neurons. Like many other olfactory mutants, they retain responses to high concentrations of AWC-sensed odors; we show here that these residual responses are caused by the ability of other olfactory neurons (the AWA neurons) to be recruited at high odor concentra...

متن کامل

Aversive Behavior in the Nematode C. elegans Is Modulated by cGMP and a Neuronal Gap Junction Network

All animals rely on their ability to sense and respond to their environment to survive. However, the suitability of a behavioral response is context-dependent, and must reflect both an animal's life history and its present internal state. Based on the integration of these variables, an animal's needs can be prioritized to optimize survival strategies. Nociceptive sensory systems detect harmful ...

متن کامل

A diacetyl-induced quiescence in young Caenorhabditis elegans.

Many organisms enter quiescence in response to adverse environmental factors. Here, we show that L1 stage C. elegans entered a quiescent state after 3hours exposure to diacetyl in which movement and growth stopped for hours to days after odorant removal. Entry into quiescence was dependent on neurons affected by the osm-3 mutation, and by AWA neurons. Conversely, AWB/AWC neurons, the guanylyl c...

متن کامل

Insulation of Signaling Pathways Odor Discrimination via Olfactosomes?

The expression of these receptors in chemosensory neu-rons, along with the large size of the family, prompted the proposal that they might represent a new family of odorant receptors. Isolation of mutants defective in one of the C. elegans GCs allows functional testing of this proposal. In this regard, L'Etoile and Bargmann show that a truncated version of ODR-1 lacking the extracellu-lar domai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2000